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"How can a computer be made to recognize
a human face? This question remains un-
answered, because pattern recognition by
computer is stiil teo crude to achieve
automatic identification of objects as
corplex as faces."

Leon D. Harmon
November, 1973
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CHAPTER 1

INTRODUCTION

1.1 Problem Formulation

The use of computers for the recognition of two-dimensional
images has heen the subject of theoretical and experimental research
for over a decade [1,2,3,4]. Originally spurred by the problem of
character recognition for computer input, researchers have recently
begun [5,6,7] to branch out and consider the recogniticn of Jther,
more compler, two-dimentional images. This thesis describes an attempt
to apply a vcrtion of the large body of pattern recognition theory to
the problem of machine recognition of humi.n faces. Such a machine
could have obvious applications in many personal identification or
verification roles. Applications in law enforcement, credit verifi-
cationr, security systems, and surveilance come to mind. This thesis
is mostly experimental in nature, its purpose being to select the
best pattern recognition techniques for the precblem and assemble them
into a working system.

The problem may theun be stated a3 follows: To d onstrate that a
system capable of recognizing humans from their facial ag~= (such as
would be obtained by a television camera) in real time with an acceptably
low error rate is posrible using presently available bardware and pattern
recognition techniques. The ultimate goal of this work might then be
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to have 3 television camera viewing ti.c entrance to a restricted area

with the video output fed to a computer. If the computer is able to

identify faces, then it can perform a table look-up to find if a person
requesting entrance is authorized and take appropriate action (e.g.,
opening the door, or calling the security guard). Since this thesis

is concerned ouly with demonstrating that such a machine is pessible,

existing hardware was used and the problem was simplified as much as
possitle. The details of the problem follow.

It was decided to define a ten class problem, that is, ten

peovle were chosen to comprise the input set. This number, although

too small for most practical applications, does provide a simple start-
ing point. The small number of classes allows the data generated to

be analyzed without time consuming calculations and also allows the

input data to be gathered in a reasonable period of time. By character
recognition standards, a ten class problem may not be iarge enough to
provide a fair test of the classification system. The work of Goldstein,
Harmon, and Lesk [8] indicates, however, that for facial recognition, a
ten class prob.em may be sufficient tu provide some indication of how

the system would respond to a larger problem. Again, it is not the

¢
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intent of this thesis to provide a practical pattern recognition system

o
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"
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for human faces, only to demonatrate its feasibility. The ten subjects

may be broken down into the following categories: four were female,

SR
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six were male, two wore glasses with dark plastic frames, two wore

s

wire rimmed glasses. The two-dimensional imsg; : was obtained from a
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television camera output interfaced directly to the computer [9].

The video signal was quantized to only two levels, black or white,

with the quantizacion threshoid level set by the operator. Because

of this severe quantization it was felt (after some preliminary exper-
imentation) that the profile view offered the most information and maxi-
mum repeatability from inage to image. Profile views were thus used
exclusively in this work. A total of 120 images, 12 per subject,

were taken and stored on magnetic tape for processing. These 120

images comprised the input set. The machine was designed to classify

an input image asc bhelonging to one of the ten classes and output its

clasgification. The possibility of an irnput image not belonging to

s e PhrA A ko AN 2 R B a B i S s R e ATE 4 e ARt M Ly Bt

one of the ten classes was ignored in the interest of simplicity.
The rest of this chapter contains a survey of the work dore in
the area of human face recognition, both by computer and human recogni-

zers. Chapter II provides a summary of the more preminent two-dimensional

fl‘

pattern recognition techniques, with emphasis on the techniques inves-

tigated “n this work. Chapter III discusses the results of machine

and human recognition on the 120 facial profiles. Chapter III also
describes two algorithms used tc train the pattern recognition system

aad experiments to verify their expected operation. Chapter IV gives a

ot s
4

Ay

description of the series of experiments performed to optimize the pattern

(iR

dresite il

nel

recognition techniques for the facial recognition problem. Chapter V

3

conciudes the thesis with a gutmary of the results and a discussion of

areas for further research.
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1.2 Survey of Facial Recognition

Virtually all of the previous work on the problem of facial
recognition has dealt with syntactical information as may be found in
a set of roughly quantized descriptive features such as ear length, lip
thickness, chin profile, etc. [10,11]. No attempt to use statistical
recognition techniques [12] for the icentification of faces has been
found.

The {irst work with syntactic vecognition is t1al of Bertillon
[11] in the clessification of facial features for criminological appli-
cation. Although later superceded by his work in fingerprint classifi-
cation, his facial descriptions were meticulously done and included
sets of descriptive names still used by law enforcement agencies. A
more modern disccussion may be found in Allen [13].

The closest to an automatic recognition system is a man-machine
interactive approach described by Goldstein, Harmon and Lesk [10], and
Harmon [14]. This system used a 21-dimensional feature vector. The
vector components were descriptive features quantized on a scale of one
to five. Some examples of the features are: wmouth width (short to
long), cheeks (sunken to full), and hair length (short to long). The
input set consisted of 255 faces and the values of the feature vector
components were determined by the average of assignments made by a panel
of ten luman observers from three photographs (front, 3/4, and side
views) of each face. The feature vectors were en.ered into the computer

and a sorting algorithm used to orxder the vectors from best to worst
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| match for some input description. The input description wss obtained
- by first having the operator -ater the most ''conspicuous" features of
-

the subject to be identified and then allowing the computer to request

fzatures that would separate the vectors at the top of the rank-ordered

1list. The procedure was stopped after ten of the 21 feature vector

] co~ponents had been eritered. Using this technique a recognition accuracy
— of 707 was achieved.

Kaya and Kobayashi [15] suggested that a set of geomatric para-

meters could be used to describe a human face. They defined anine para-

SN T ATy 2 A S e e

meters that were Fuclidian distances between specified points on the

TENEAL TSR 7

front view of a face. Some typicai parameters are height of lips, dis-

tance hetween upper lip and nose, distance between lower lip and chin,

and distance between corners of the eyes. All parameters weve normalized

e TR

by the nose length to provide size invartiance. These parameters were

measured from a set of photographs of 62 people. A serial classification ©FY

tree search algorithm was proposed in which each parameter is used in

turn to reduce the population uncil only one face remained. A theoreti-

cal analysis using assumed parameter probability distritutions and neg-

ligible noise showed that the algorithm could achieve a recognition

accuracy of 902 within a population of 15,000 faces.

The other investigations of the recognition of human faces are

concerned with recognition by humans. Goldstein, Harmon, and Lesk

[8] describe a series of experiments leading to 22 subjective features

of human faces that are useful for recognition. The sample set consisted
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of Harmon's 255 faces, and ten "jurors" were used to assign numerical
values to the features. The 22 features were selected from a set of 34,
the zelection criteria being large variance over the sample set and
small variance over the jurors. The 22 features were tested for cor-
relation and found to be largely independent by several tests. A

model for classification by humans was proposed in which the features
were ordered from most "extreme' to least ''extreme'. Each feature was
selected in turn and faces with a feature value close enoupgh (by some
constant threshold) to the specified feature value were kept, while

the rest were rejected. The number of features used to narrow the
sample set to one using this technique was found to depend logarithmically
on the size of the sample set and an equaticn describing this dependence
was derived. Approximately slx features for the 255 samples were used
and it was predicted using the previously derived equation that about

14 features would be necessary for a sample size of 4 x 106. The com-
puter model was verified with an experiment using human recognizers who
obtained a recognition accuracy of 53%.

Goldstein and Mackenberg [16] experimented with facial r<cognition
by humans given only a portion of the face. The recognizer was required
to identif'y a known person from a photograph which had been masked so
that only a portion of the face was visible. This study indicated that
for recognition the upper parts of the face are more important than the
lover parts. Recognition accuracy was generally better for pictures

that contained several of Harmon's 22 features than for pictures that
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Harmon [17] reported an investigation into the minimum amount

‘- of information necessary for facial reccgnition by humans. Fourteen

¥ o
TR Eﬁ K

front view photographs were digitized with a flying-spot scanner and

stored on magnetic tape. The high quelity image (1024 x 1024 bits)

B w—\-.‘t!«w R S L T st
.-

was fragmented into n x n squares and each square was assigned a

-

brightness equal to the average of the brightness values of all the ori-
ginal samples within the square. Brigntness was quantized to 8 or 16

levels. The final picture thus obtained contained high frequency

noise corresponding to the block edges and although the energy content

of the high frequencies was small, recognition was improved l.y low

pass filtering. It was hypothesized that this was due to the eye's

. sensitivity to straight lines and regular geometric shapos. With the

facial image quantized to a 16 x 16 grid with & grey levels, an average

recognition accuracy of 487 was achieved by 28 human recognizers. The
results also indicated that the grid placement on the photographs may
be critical for optimum recognition. Harmon and Julesz [18] used the
same technique to investigate the effect of noise on the recognition

of faces. They found that random noise at frequencies close to the

N T T L T R T T P,
> = -

spatial quantization frequency '"magked" the information and raised the

A s

amount of information necessary for recognition, while random noise of
frequencies greater than two octaves removaed from the quantization fre-

quency had little effect upon recogni:ion.

L2 A LR

Hochberg and Galper {19] tested the percepticn of, and memory
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for, faces by humans. They found that recognition accuracy was
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Stgnificantlf.greater for upright than for inverted photographs of

human faces. Faces that wers learned fror upright photographs secemed

P
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to be tied to orientation, while faces learned from inverted photographs

ot
i

did not seem to be tied strongly to oriencation. Bradshaw and Wallace

il P2

{20] used an Identi-Kit to obtain i: formation on how humans recognize

“:.d’;-w’g oah s

faces. Their results indicated that humans classify faces with a '"serial
self-terminating' procedure, that is, each facial feature is considered
in turn until an identification is made, at which point the procedure
stops. They found no evidence for parallel processing, or Gestalr
perception [21].

If pattern recognition is one side of a coin, then pattern
generation is the other (and usually more tractable) side. Two efforts
at the computer generation of faces, although not terribly germane to
the present work, are interesting enough to be mentioned. Gillenson
[22] designed a system for use by 'non-artists" to reconstruct a line
drawing of the front view of a face on a cathode ray tube display.

The system was interactive with the uszer and consisted of a library
of stored features with routines to distort the features to obtain a

better likeness. Parke [23] developed a system to draw high quaiity

b 4 5y KSRt S L 2t P LS T B e
A £

half-tone renderings of a human face in three-dimensional perspective.

LS ke per b e i

The skin surfece was approximated by a net of polygons and a shading

algorithm was used %o give a continuous curved appearance. The face

was representeq by a matrix describing the polygon vertices, and anima-
tion was achieved by interpolating between the vertices' positions for

twe end expressions.
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In addition to the above, some qualitative work may be briesly
mentioned. The Identi-Kit is the best known semi-automatic system for
generating line drawings of the front view of a human face and is usad
mainly by police departments. The Identi-Kit uses clear plastic over-
lays each having a single facial feature to form a composite picture.
There are several different overlays for each feature, so that by choosing
the appropriste features a reasonable facsimile of a specific human face
may be produced. There are several other similar systems in use, and a
summary of their differences and operation may be found in Gillenson [22].

Wall [24] indicates that criminological eyewitness identification
is virtually always subject to error unless the witness knew the subject
in advance of the act. The factors of fright, similarity of faces,
and poor and fast viewing conditions tend to make accurate recognition
difficult. Although artists have been drawing human faces for all of
history, there is little in artistic literature discussing the recogni-
tion of faces. Willis [25] mentions the different variations of facial
features and how they may be realistically represented in drawings.

The above survey points ocut the basic differences between the
previous work in facial recognition and the work described in this thesis.
This thesis describes the development of a completely automatic and
real time facial racognition system. This system uses statistical pat-
tern recognition techniques to classify facial profiles cbtained from a
television camera input Previous systems have been at best man-machine
interactive with the facial features described to the machine by the

human observer from a photograph. Previous work has also depended upon
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syatactic pattern recognition with no investigation into the applicabili~
ty of statistical pattern recognition to the problem. Finally, the
facial recognition system described in this thesis provides the highest

recognition accuracy of any system known to the auchor.
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CHAPTER II

PATTERN RECOGNITION TECHNIQUES

In this chapter the pattern recognition aspects of this
regsearch are discussed. A short review of the two-dimensional pat-
tern recognition problem is provided, followed by a description of
the hardware and scme of the software involved in this particular
system.

2.1 Introduction

Although the term pattern recognition encompasses far more than
picture recognition, in the interest of conciseness, oaly the tech-
niques associated with two-dimensicnal image recognition and germane
to this work will be mentioned. Most designers of digital two~dimensional
pattern recognition machines seem to use & rather standard structure.
This basic form is shown in Figure 2.1. Most workers in the image
recognition area ignore the problem of target acquisition. The scene
presented to the machine contains only the pattern to be recognized,

a simplification which may not be realistic outside the laboratory
environment.

The input device to the image recognition system may be non-
exiatent (i.e., the pattern is digitized by hand and entered through a
standard peripheral), an array of photocells, a flving spot scanner, or
television camera. The input device is usually responsible for the
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image digitization. Prefiltering of the image may or may not be used.

o
o

RV

Prefiltering is used to remove any extraneous noise from the image,

Gttt fen

{ and, in some csses, smooth the image boundary.

r The process of featurz extraction, or image transformation, is

: used to reduce the amount of information to be handled by the classifier
by extracti.g "features'" from the image that are in sume sense repre-
gseritative of the image. 1t is desirable that these features be in-

- variant with respect to image position (translation), size change, and
1 rotation, so that an image which is modified by any combination of the

abcve three transformations will be classified the same as the original

‘?5‘.

image. Several techniques for feature extraction from two-dimensional

fﬂ
4

images have been developed. The earliest used are the related tech-

3
¥ Ty
e,

Fas\E o dings

niques of cross-correlation, template matching, and matched filtering

s,

ko 3. o
SSRGS o

2O

(‘ {1,26]. These methods compare a stored pattern against the input image

and produce a single metric which is related te the 'pocdness of match'.

e

H
i These techniques have several disadwvantagas. Since comparison patterns

(templaces) must be stored, the machine memory size must be very large

i even for simple recognition problems consisting of only a few classes

. with small image sizes (large quantization intervals). In general these

i
-

techniques are not size or rotation invariant.

A Another technique is that of geometric features extracted by

local neighborhood operations in array processcrs. First proposed by

- S 2 TR A Y, G A AL U s, £ R
S HERY SR Sl S o g o

AT

Unger [{27,28], the work has been extended by several by several other

-r regsearchers [29,3"]. The major problem with this technique seems to be

rod
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its lack of generality, although it has been shown t> work for simpie
geometric shapes [31], it has not been successfully applied to the re-
cognition of complex objects. The features are ugual'y not favariant
with respect to size or rotation.

A class of feature extracticn techniques that acems to be gain-
ing support at present are the various friequency domain algorithms.
Among these are the impulsec response fiiters [32], the discrete Fourier
transform, and the Walsh/Hadamard/Haar transforms. The impulse respense
filters are often used in the analysis of aerial photographs and terrain
clasgification [33] to detect smell areas of interest such as orchards,
oil tank farms, and railroad yards. The filters are simply a distribu-~
tion of integer weights on a grid such that when the appropriate feature
{e.g., a straight line) is centered under the grid the sum of all weights
times their acsociated optical densities is above a threshold. The
discrete Fourier transform has given good results on a number of pattern
recognition problems [f]. The use of digital transform domains such
as the Walsh~-Hadamard and Haar has been proposed [34]. These techniques
generally suffer from the same lack of invariance as the other methods
discussed ahove, i.e., size and rotation, although Richard's technique
of using Fourier descriptors of the boundary curve of an image [7] is
both size and rotation invariant.

The last class of techniques 1z that of arbit-ary transformations.
These are transforms desigred to be invariant with respect to transla-

tion, size chanze, and rotaiion. Circular auto-correlation and moment
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invariants [35] are in this class. Moment invariants have been used

— by Dudani {5] with excellent resulta. Circular auto-correlation was

developed during this research and will be described below.

The final process in a pattern recognition system is classifi-

cation. Usually the unknown feature vector is compared against a list

! of vectors for each class (authority files) and some metric for each

. class, corresponding to the probability that the unknown vector belongs

+- to that class, is computed. The unknown vector is then assigned to

the class to which it has the highest probability of belonging.

A probabilistic classifier of the Bayes type will theoretically

i! give the highest possible recognition accuracy on a given set of feature

vactors [36]. The drawback to the Bayes classifier is the need to know

the a priori probability density functions for the occurrence of a

vector and the occurrence of a vector given that it belongs to a speci-

)
PRRI)

PR

fied class. These functions are seldom, if ever, known. The experi-

mental determination of such fuuctions requires large sample sizes

.w«,,
[Ro——

nsually not available o the researcher. Without accurate probability

density functions the Bayes classifier may not perform as well as a

non-probabilistic classifier [5].

A simple pilacewise-linear classifier is the nearest neighbor

classifier. 1In this method the wnknown feature vector is assigned to

the class to which it hus the smallest Euclidian distance. It has heen
shown that this technique will produce a recognition accuracy no worse

.- than cne-half that of sn optimal {(Bayes) classifier [37].
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A more complex and non-linear classifier is the distance-weighted .
k-nearest neighbor rule [5,37]. This technique assigns weights to the 1
k nearest neighbors from the authority file of the unknown vector. The
weights assigned to the k nearest neighbors are summed with respect to
class and the unknown vector assigned to the class with the highest
weight.

The vectors used in a classifier may be either normalized or

unnormalized. One method of normalization is to divide all vectors by

their length, so that only vector angles determine classificatior.

Another method is to subtract from each component of the vector that

component's mean and then divide by its standard deviation [38]. The |
type of vector normalization used, if any, depends upon both the feature

extraction and classification algorithms.

2.2 System Description ‘;
The hardware used in this experiment will now be described. 1

The computer used to implement the recognition algorithms is the Ohio

State University Flectrical Engineering Department's PDP-9. This par- %

ticular machine configuration contains, in addition to the standard

peripherals, a Tektronix 611 bistable storage cathode ray tube display. ;

Connected to the FDP-9 is a closed circuit black and white television

camera. The interface [9] which connects the camera to the computer

contains a circuit to threshold the video input signal from the camera

to a binary output. The threshold level is adjustable and the binary

video signal is fed to a television monitor so that the operator may

QS p st s ey it 5
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adjust the threshold level to compensate for changing light levels and
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1 obtain the desired image. The images obtained from this system are

- —

360 x 240 bit binary arrays and are stored in the machine as 20 x 240

18-bit word arrays. The interface actually reads only about 180 bits

per scan line, which gives a distorted image when displayed on an array
with equesl horizontal and vertical bit spacing. An aspect ratio cor-
rection routine is therefore employed [9] to approximately double the

number of bits horizontally, which resulte in an undistorted image.

2.3 Experimental Procedure

The procedure used to obtain a facial profile consisted of
seating the subject in front of a black backdrop facing perpendicular
to the opticel axis of the television camera. The camera position was

adjusted so that the subject's profile filled the monitor screen. The

iigliiting, video thresnold, and camera aperture were selected to obtain i-

a reasonable replica on the monitor. In this gvstem, subjects' flesh

O L

ke

appeared white on the monitor and the hair and background were black.

a
-

Appendix A contains samples of negatives of the facial profiles obtained.

Subjects 8 and 10 wore horn rimmed and black frame glasses, respectively,

e s B
PRy ot Sy 3 e

and as can be seen from Appendix A, these glasses were thresholded as

black. Subjects 5 and 6 wore wire rimmed glasses, which are not visible

(v “k"’(

on the thresholded image. !
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Once a satisfactory image was obtained on the monitor, the image

e

AKN

was stored on a disk file and later transferred to DECtape. The idea

-k ve s

here was to build a large file of facial images so that it would not be
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necessary to have the subjects present every time an identification .{ o
syatem was to be tested. With this file of images, it was then possible ‘i }
to divide it into two distinct sets, one for training the recognition

system and one for testing the recognition accuracy with unknown profiles.

It was the author's intention at the beginning of this work to
obtain one image per day for each of the ten subjects. It was felt
that this procedure would give a set of images with 'real' day to day
variations and thus be a reascnable data set upon which to base a pattern
recognition system. This dream was gshattered by the practicaiwﬁ;;%lem
of scheduling computer time and matching personal schedules. In the
end, most of the images were obtained in two sittings of six images o
each per subject, for a total of 120 images. This total data set may
be divided into two sets of 60 images, 6 images per subject. The first
60 images were obtained with changes in lighting, video threshold and g
camera aperture settings, and subject position in an attempt to intro-
duce variations in samples within a given class. The second set of 60
images was obtained with fixed lighting, video threshold, camera aperture,
and subject position in an attempt to reduce the sample variation to a
minimum,
2.4 Image Filtering
The pattern recognition system described in this thesis uses two
image filtering routines. The first is a 'prefilter' routine whose
: purpose is to remove high frequency noise on the image boundary. This

noise is caused by several factors. First is the quantization noise

Iy
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§§ inherent in any digitization process. Second 1s the noise generated i
- by the aspect ratio correction mentioned previously. Because the %
g number of horizontal hits is almost doubled, steps in the image boun- j
i
{ dary two cells wide tend to occur. Third is the noise generated by .

inherent instabilities in the video level and threshold circuits. The
video signal from the tzlevision camera is not very stable and conse-

quently it is difficult to obtain a smooth boundary on the thresholded
image for a light to dark transition in the viewed scene. This effect ‘
is most apparent in the hairline area of the facial profiles, as can be

seen from the pictures contained in Appendix A. The second filter is

used to extract the front edge of the facial profile. This filter re-

B jects the larger image variations caused by the highly variable hair-

line area described below.

The prefilter is implemented with binary array processor sim-

P oy

ulaticn routines [39]. Briefly, the array processor structure of this

| anmnete]

gimulation is a synchronous two-dimensional array of storage cells.

- Each cell contains one bit of a binary image. The next state of each
cell is a binary function of its present state and the states of the

i eight "neighbor" cells adjoining it (the simulation routines use a rec-

tangular tessellation {40]). Threshold logic is used to implement the

binary function. The algorithm for the prefilter is to first set to zero

ey

any cell whose eight neighbors are not all one, thus remcving "noise”

cells. Then any cell that is zero and has at least one neighbor that
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ic one on a Von Neumann neighborhood [41] is changed *o one. Finally,
any zero cell that has at least one neighbor that is one opr a Moore
neighborhood {41] is changed to one. The last two operations have the
effect of smoothing the image boundary as well as filling one and two-
cell-wide gaps in the image. The boundary smoothing is particularly
useful in this system because the aspect ratio correction [9] required
by the television camera interface tends to generate two—-cell-wide steps
in the input image.

The edge extraction filter is used to remove the back of the
facial profile. It was determined early in this work that the televi-
sion camera and threshold circuit used to obtain the binary images gave
drastically different images in the hairline and chin-neck areas for
slight lighting changes. It was also felt that the hairline and collar
areas would be highly variable on a day to day basis. For these two
reasons it was decided to mask all but the front of the facial profile
and use only this edge for classification. The edge extraction is
accomplished by duplicating the input image, shifting the duplicated
image backwards, and then setting to zero all ‘mage cells covered by
one cells of the duplicated array. The second array is then moved up

and dovn with the image cclls overlayed by the one cells of the second

array being set to zero after each move. The distance of all translations

is given by
d =K /A (2-1)

vhera: d is the translation distance of the duplicated array

A is the total image area, i.e., the number of one cells

s t

PYTv—
'

¥
&
S
o
>
%
5
*d
=5
4
i3
7
%
5
¢
&
)
Py
3

e s s A Fum tubir au

AR LB A et s

RTRTION

JRVAFE S

A are

G hkham s T MR RS

(TN

S 1)

W U A b

Voo e AWEIER SN LAY ek 7




|

et
H ? '1
H

K is a constant empirically determined.
This relation tends to make the routine size independent (i.e., the
same height-to-width ratio of the filtered image is maintained). This
is not & very accurate method of obtaining size independence, since
two images of a subject may have significantly different areas, due to
the input system flaw mentioned above (see Appendix A). The method
did, however, seem to be adequate for this system. This filter routine
is certainly not the only, or even hest, method of obtaining this
function, since it leaves the forehead area dependent upon the hairline
(see Appendix B). It does have the advantages of being simple, fast,
translation and size invariant, and useable for any rotation angle.
The binary array processor simulation routines used in this pattern
recognition scheme could have been used to obtain an image edée simply
by setting to zero all cells with the proper neighborhood. For example,
to obtain the right edge of an image any cell whose righthand neighbor
is one should be set to zero. This method of edge extraction was not
used for two reasons. It was felt that the binary image transformations
would be less susceptible to noise if they were presented with a solid
image rather than a single-cell-wide edge. Also, this edge extraction
technique can only extract edges at 45° increments, which is undesirable

if the system is to be expanded to work with arbitrary image rotations.

2.5 Binary Image Transformations
This research uses two of the image transformation techniques

previously discussed, correlation and moments. Correlation was chosen
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mainly for its ease of computation and its ahility to be made translation
and size {nvariant, and have predictable and easily computed variation
under rotation. Although correlation does not presently seem to be
a popular technique with researchers in the pattern recognition area,
it has been used by dorwitz and Shelton [42] on 2 simple character re-
cognition experiment with good results. Moment invariants were chosen
because of the excellent results Dudani [5] obtained on aircraft recog-
nition with this technique. It was felt that moments would provide a
reasoneble benchmark to compare correlation against, as well as provide
information on how well this transformation performs on a different set
of binary images with an increased number of classes.

Consider then a finite, continuous, binary, two-dimensional
image, I, on some plane, P. For any point p in P, I is assigned the
value ¢ or 1. Introducing a cartesian coordinate system in P with

coordinates (x,y) allows I to he written as a function of x and y:

f(x,y) = 0,1 for any real x,y (2-2)
The plane is infinite in extent, but we will require I to be finite,

that is, for the image area defined as:

A= [ [ t(x,y) dx dy (2-3)
-l -0
(vhich is simply the number of one cells for a binary image), we require
A to be finite; A < =,

The image may be digitized with a two-dimensional sampling function:
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§ f(my,ny) = f(x,y) 8§(x-my)S(y-ny) (2-4)
gg for m and n integers, -« < m <
H
~ <n<w,
E 6(x) 1is the impulse function, defined as
i §(x) =1 , x=0 -<x <o (2-5)
- — —

§(x) = 0 , otherwise

lm‘

and y is the sampling interval (a real constant). The effect of digi-

tization is simply to add a quantization noise, n, to I and any function

Rrwwaro]

of I:

n(xy,yy) = <([xyl,[yy]) - £(xy,yy) (2-6)

osorie

!

where [x] is the greatest integer function.

B s
[ e

The mean error is then given by:

|

BwNCIv
Brower

Intx,y) dx, dy . (2-73

o
&u.a

The quantization noise is usually reduced to a tolerable value simply

by setting v much smaller than the size of any portion of I that is of

Wbt §
B

interest. Rosenthal has shown [43] that any function of a digitized
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image may be expressed as & continuous function of the continuous image

to within some quantization ertor. In the following discussion this

i

Bt W o
s

approach will be taken since it results in a somewhat simpler and, in

the author's opinion, more elegant formulation. In the pattern recog-

nition work described in this thesis, the input system noise and the
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image variations within a given class are much larger than the quan-

tization error, so no analysis of the quantization error was performed.

PRV
S

Consider the two-dimensional auto correlation of I:

b At AN VDRI

g(u,v) = | [ £(x,y) £(xtu, ytv) dx dy (2-8) .

AWhoar e

for uy,vreal. ®*<u<e, -w<v<wo, ;
7] !

Using the identities ¢
uev/Aacos 0 for O, real, 0 < 0 < 7 (2-9) ) :
0<ac<w i ;

v=vAasin 0 (2-10) P

the autocorrelation function of I may be expressed in a size normalized

rolar coordinate form:

T K e v S

o Away

g(a,0) = &Q}a‘i’l X (2-11) gl

- 1/2 |
The factors A 1 and A are used to obtain size invariance of g(ax,9). -

- -

The autocorrelation function is even im u and v, which translates into

o am—
R P NI NI SR

reriodicity in the polar coordinates with period n. This may be demon-

SRR NN

strated by setting:

a' = a (2-12) %

N =0+ (2-13) | |

taon, M ;
A' - 7 } £(x,v) dx dy = A (2-14) {

IO ST
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u' = /&' q' cos 0' = /A a cos(@+n) = /A a cos 9 = -u (2-15)
v' = /A" a' cos O= VA a 8in(04n) = -VA & sin O = -y (2-16)

80

gu',v') = £(x,y) f(x+u', yiv') dx dy

d—s
d—s

f(x,y) f(x-u, y-v) dx dy . (2-47)

b
s

Now using the substitution,

'

x' = x~-u (2-18)
y' =y -u (2-19)
dx' = dx, dy' = dy

we have

g(u',v') = f(x"+u, v'+) £(x',y")dx' dy' = g(u,v) (2-20)

8 —s
b—s

therefora g(u',v") . g (u,v)
A

g(a',o') - A - 8(0,9) (2-21)

and thus g(a,0) is periodic in O with period .
The autocorrelation function is also invariant under translation,
since with

x' =x+a (2-22)
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y' =y +bh for a,b arbitrary real constants -=<a<w, —achew,  (2-23)

b —s

A' = [ [ £(x+a, y+b) dx dy (2-24)

g'(u,v) = [ [ f(x+a, y+b) f(xtuta, y+wb) dx dy . (2-25)

Changing the variables of integration to x' and y'

dx' = dx dy' = dy
A' = [ [ f(x',y'") dx' dy' = A (2-26)
g'(u,v) = f f f(x',y') £(x"+u, y'+v) dx' dy' = g(u,v) (2-27)

and then also

g'(x,0) = g(a,0) . (2-28)

The size normalized polar form of the autocorrelation function

is invariant under image size change. To show this, let,

x' = ax for a an arbitrary real constant (2-29)

L]

y' = ay (the magnification) 0 < a < = (2-30)

A' =

il

g'(u',v') =

f(ax, ay) dx dy (2-31)

d—s

f f(ax,ay) fla(xtu)a(:+v)] dx dy (2-32)
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Changing the variables of integration to x' and y' 3 ’r
H dx' = adx dy' = ady §
&
H @ o 2 2 . %
a1 = [ [ £(x',y') a"dx'dy’ = a"A (2-33) *
3 - - 3
-f . @ o 2 ;ﬁ
g'(u',v') ~ [ [ £(x',y") f(x'+au, y'+av) a dx'dy' %
i = -0 -0 ’”q
. = g g(au, av) (2-34) Z
z I and — .
4 u' = /A' a cos O = Ya?A a cos O = a/A a cos O = au (2-35) , -'-{%
s v' = /A' a sin 0 = av (2-36) ; i
Al a0 ‘E§
L [ S I | 2 [ A
g'(a’(_)) - g (u ’v .)- a g(u ’v ) - g(u’o) . (2-37) : :"1
- 1 A' 82A ! ﬁ
- The size normalized polar form of the autocorrelation functicn ’g
;; . is not invariant under image rotation, but it does change by only a jj?
3 | phase factor equal to the image rotation angle. This can be seen using ;
o the identities:
e -
: x' = x cos ¢ -y sin ¢ for rotation angle ¢ (2-38)
§~ y" »x sin ¢ + y cos ¢ 0<¢ <2 (2-39)
>!£ Al = f f f(x cos ¢ - ysin ¢, xsin ¢ + ycos ¢) dx dy (2-40) .
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g'(u',v') = [ [ f(xcoe ¢ ~vsin ¢, xsin $ + ycos ¢)

-l -

*f{Cctu)cos ¢~ (y+v)sin ¢, (xtu)siné +(yiudcoséldx dy

(2-41)
Changing the varilables of integration to x' and y’
: 3x' ax!
I~ = 08 ¢ ’ dy w -gin ¢
ay’ oy’
—a—::---sin¢ . -a-g“-ncos¢
'cos¢ s =8ind
: [3] = ’ - cosz¢ + sin2¢ =1
|sind , cos¢
A= [ [ f(x',y') dx' dy' = A (2-42)

= g{ucos¢ -vsind , using - vcos ¢) (2-43)

and if we let

d =a o' =m0+ ¢ (2~44)
u' = /A a cos(0+$) = /A a (cosOcoss-sinOsing)
= ucos¢ - vsin ¢ (2-45)

"= /A a sin(0+$) = VA a (sin@siné+ cosOccsé)

<
]

using + vcoe 4 (2-46)
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g'{u',v

so  g(a',0') = L ga, 0+ ). (2-47)

The function g(a,)) may be uged to transform a blimv image into

an MN-dimensional vector by setting:

o = a with a; a real constant (2-48)
u,n,M,N integers

m

1 M (2-49)
1 n N

iAlA
bAga

For Tack of a more inspired neme this transformation is veferred to as
the circular autocorrelation function. The MN terms o>f this function
are, ag shown above, independent of translation and size changes of the
input image, 1 (within, of course, quantization error for a discrete
computation). Under an image rotation of »/N radians, the terms are
reiated by

g'{m,1) = p(m,N) (2~50)

g'(mn) = g(m,n-1) , n>1 (2-51)

and similarly for other increments of »/N¥. It can be seen that for
rotation angles other than wn/N there will be another quantization
ervor introduced, and thus ¥ must he chosen large encugh to make this

error nagligihle for the particular application. This relation between

image rotation and the circular autocorrelation term sequente ailows the

image angle to be determined to within #/N radians (+ a w radian
ampiguity because of g(a,0) 's periodicity ia O of %j. The penalty for
this feature 1s an increased classification time over a rotation in-

variant transformation because of the N gearches of tne authority files
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required. The ability to determine image rotation angle, however, may
be worth the time trade-off in many applications. Practically, the
circular autocorrelation function is computed simply by duplicating
the input imags, shifting the duplicated image a distance YA a at
angle © and counting the number of intersectine one cells.

The moment transformation is based upon a set of two-dimensional
momeat functions derived by Hu [35], which are invarfant with respect to

image translation, size, and rotation. The two-dimensional moments are

defined by:

©0 [ 3
iv ¥ P_q
Ba ™o f(ym,yn) m'n (2-52)
Pa o m L ,,Z..,.,
-] o
Mo ] }  flymyn) p,q=0,1,2,... (2-53)
me—co pe—m
th
vhere: mpq is the (p+1)  order moment

f(ym,yn) is the digitized image.

The centroid of the image is then given by:

_ 1 - -] o
mem oy mZ-a m§_° £(ym,vynIm (2-54)

— 1 L] -4
nen == 7 ¥ flymy)n (2-55)
01 ¥ MW= W=~

where (m,n) are the coordinates of the centroid of f(ym,yn).

The central moments are defined by:

1 - o0 - -
=% L 1 fomym@mPm-m) . (2-56)
II ) n--ﬂ
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The central moments may also be expressed as sums of the ordinary
moments [5]; the expressions for the first three orders are:
Yoo mOO -] (2-57)
]_’01 - ulo w () (2"58)
2
- - - A Y
Yog = Pyg (mlo) (2-59)
? 2-60)
Yoz " o2 T (m01) (
3
My = Mag = 3m20m10 + 2(mm) {2-h1)
2
M2l " M1 T M1 " 2™11™0 t 2™’ "oy (2-62)
2
iy = Wyy - WyoMy, - 2m11m01 + 2(m01) ™0 . {2-63)
3
Moz ™ M3 = IMooMyy + 2(my,) (2-64)
The moment invariants used in tliis research are:
1 2 2
M w = [(u,, - u..) +4u ) (2-65)
2 rl‘ 20 02 11
W el o - 3w+ Gu,, - gy (2-66)
3,6 730 12 2y 103
1 2 z
L -
M4 6 [(u30 + "12) + (ugy +¥53) ] (2-67)
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2 2

1
1 - —— -
M5 (12 (g = 3 ) (ugg +u ) [Cugy +upp) + 3ug; +u50) ]

2 2
+ (3u21 - u03)(u21 + u03)[3(u30 + u21) = (uyy + u03) 1} (2-68)

2 2

e 1 - - (1
Me 8 ((u20 Mop) [(ugg + "12) (121 + u03) ]
+ loun(u3o + ulz)(u21 + "03)} (2-69)
9 2
M7 - -——-{(3u - um)(u30 + “12)[(“30 + ulz) - 3(u21 + "03) ]
2 2
-~ (u30 -~ 3u12)(u21 + u03)[3(n30 + "12) - (u21 + u03) 1} (2-70)
1/2
r = (u20 + uoz) . (2-71)

It can be shown [5,35] that functions Mé - M} are invariant under image
translation, size change, and rotation. By computing Mé - M; on both

the imans sZlhouette aud boundary a twelve-dimensional feature vector

may be obtained [51.

2.6 Clagssification Algorithms

Two classification algoritims wecre investigated in this work, the
nearest neighbor rule and the distance-weightcd li-nearest neighbor rule.
The nearest neighbor classifier ~oiputes the Euclidian distance between
the unknown vector and every vector in the auttority files. The unkncwn

vector is assigned to the class which contains the vector closest to the

unknown. This nay be written as:
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n Pq 21/2
eq ™ | kzl (c -8 )] (2-72)

where: r. is the k~th element of the unknown feature vector, R,

k of dimension n.

q
s: is the k-th element of the p-th vector S in the authority
file for class q.

e 18 the 'error' (FEuclidian distance) between points R and S.

Then for Q authority files (and hence G classes) each containing p

vectors (depth F), there i3 some smallest e

Pq
e < e for all p,q l<pc<P (2-73)
mn pq
1<q<Q

and R is assigned to class n.
The nearest neighbor rule is a simple piecewise linear classifier;

that is, the class houndaries, or decision surfaces are defined by seg-

ments of hyperplanes. For example, in a two class problem with two author-

ity vectors per class, in two dimensions, the decisiou surface defined
by the nearest neighbor rule is showm in Figure 2.2. An unknown vector
in the space t the left of the decision surface would be assigned to
class 1 by the nearest neighbor rule, while an unknown vector in the
space to the right of the decision surface would be assigned to class 2.
Piecewise linear techniques such as the nearest neighbor rule can be
combined wizh logical rules to construct quite complex boundaries [44],

but only the simple nearest neighbor rule was used in this research.
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The distance-weighted k-nearest neighbor classifier assigns
an unknown vector, R, to the class most heavily represented among its
k nearest neighbors in the authority files. The 'representation' is
computed as the sum of weights assigned to the k vectors. The welghts,
in turn, depend inversely upon the distance between the unknown and

authority vectors. Using the nrtation defined above we may write:

Vog " f(epq) (2-74)

wvhere “bq is the weight assigned to the p-th vector in the

authority file of class q.

The actual weight function depends upon the type of feature vector used,
and will in turn affect the decision surface shape. f(epq) is usually

defined such that:

limw = 1im f(e ) =1 (2-75)
e 0 P¥ o 4o Pq
Pq Pq

lim w = 1lim f(e ) = 0 . (2-76)
e e e = Pq

P Pq

The class weights, W., are then determined by:

1

P

WI

q p-l Pq

‘$Q is computed only for the k nearest neighbors of the unkncwn vector

R, with all other wbq set to zero. k may be a fixed number, in which
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case the lowest k epq

and depend on the number of error terms below some limit:

are selected to compute wa’ or k may be variable

= 0 if > s 1<p<«<P;lcgqcx . 2-78
In any case, there will exist a largest Wq

w2 Wq for all q . l<qz<Q (2-79)

and R is assigned to class n. The decision surface defined by the

distance-weighted k-nearest neighbor rule is decidedly non-linear.
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CHAPTER III

FACIAL RECOGNITION AND AUTOMATIC TRAINING

3.1 Facial Profile Recognition

Once a training algorithm to select the vectors for the
authority file: has been devised and verified and the various system
parameters optimized, the pattern recognition system is complete and
the testing of its ability to recognize facial profiles may begin.
Five experiments were conducted. The procedure in each was to divide
the 120 facial profiles into two distinct sets, a training set and a
test set. The activity sort training rule (to be described later in
this chapter) was used to select vectors from the training set for the
authority files. The recognition accuracy of the system was then
tested with both the training and test sets. The recognition accuracy
obtained on the test set is, of course, the only valid measure of the
system's performance, since the test set consists solely of images
that are unknown to the computer. The recognition accuracy on the
training aet, some of whose image feature vectors will be stored in
the authority files, was included simply as a bhenchmark. In the
remainder of this thesis whenever recognition accuracy is mentioned,
the recognition accuracy on the independent test set is meant

unless otherwise specified.
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5 N
éé In experiments 1 ~ 4 training with the activity sort rule ?
E% was terminated after 250 random selections from the training set had
;é been made. In experiment 5, 500 selections were used because of the
‘é larger training set size. This was deemed a sufficient number cf
% inputs to achieve maximum recognition accuracy based on the training
% times obtained in the tests of the activity sort training rule de-
; scribed in Section 3.4.
f In experiment 1, samples 1-6 of the facial profile images in
é each class were used as the training set, while samples 7-12 of the
% facial profile images in each class were used as the test set. 1In ;
E% experiment 2, this was reversed with samples 7-12 used as the training |
; set and samples 1-6 as the test set, The results of these two experi- |
i ments are shown in Tables 3.1 and 3.2, respectively. Note that the %
jé recognition accuracy on the test set is considerably higher in the : %
.é first experiment. This is most likely due to the variations intro- : g
‘é duced in samples 1-6 of the facial profile images by changes in i %
%, lighting, camera aperture, and subject position as described in Section \

; 2.3. VWhen used as a training set these images seem to provide authcr- 2 %
'§ ity files that better define the region in the feature vector space :
i ‘ in which each class falls (i.e., a better decision surface) than do | 3
~; samples 7-12, where variations from image to image were held as small |
; as possible. }
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|Authorit_‘J Recognition Accuracy i

File | Training set Test set 5

: Depth No. Correct } % Correct No. Correct | Z Correct :
| 1 34 56.7 27 45.0
i 2 48 80.0 3% 56.7
} 3 57 95.0 46 76.7
; 4 59 98.3 43 7.7
i 5 60 100 41 68.3
3 6 60 100 41 68.3

Training Set - Samples 1,2,3,4,5,6
Tegt Set - Samples 7,8,9,10,11,12

Table 3.1 Facial Profile Recognition Experiment 1 Results

AL

Authority Recognition Accuracy
File Training set Test set :
; Depth No. Correct | 7 Correct No. Correct | % Correct f
E 1 53 88.3 26 43.3
’ 2 59 98.3 32 53.3 ;
3 60 100 26 43.3 a
E 4 60 100 26 43.3
5 60 100 26 43.3
6 60 100 26 43.3

3 Training Set -~ Samples 7,

7,8,5,10,11,12
Test Set - Samples 1,2,3,4,5

1
»6

Table 3.2 Facial Profile Recognition Experiment 2 Results
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Fxperiments 3 and 4 (Tables 3.3 and 3.4, respectively) used -
random selections of 6 images per class in the training set and the
remaining images in the test set. Maximum recognition accuracies on
the test set were better than those cbtained in experiment 1. Experi-
ment 5 used a random selection of 9 images per class in the training
get and the remaining images in the test set. The results, in Table .
3.5, show the highest recognition accuracy achieved on any test set.

This seems to indicate that if the activity sort rule is presented
with a large training set, it can determire the decision surfaces

(authority file vectors) to provide better recognition accuracy on

f
!
]
i
]
:

independent data than if it is presented with a smaller training set. .
"Seems' is used in the preceding sentence because the small size of

the test set makes generalizing the results very risky, but the

preceding statement doea agree with the expected outcome from proba-
bility throry. As more samples of the classes are ottained, the sample
distribution becomes better defined and the decision surfaces can
therefore be adjusted (i.e., authority file vectors picked) to provide
hetter separation between classes and hence better recognition accuracy.

Notice that in all cases the maximum recognition accuracy on

the test set does not occur at maximum authority file depth, as might

.
PSR

3 be expected. Plots of recognition accuracy vs. authority file depth

Tt REG

are given in Figure 3.1. The maximum recognition accuracy seems to

W

occur at about one-half the maximum depth. The reason for this be- X
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havior is not clear--the umall sample size makes any generalization

AL A
'
B ma

q: difficult.

Sk ey

TR ¥

1\

B e et eI % "t . .
AR LNt AR N ARG e, | et o
N

o tv



Tepan bR o

e “.'ﬁ.,v_, Yyt

g o A SR,

— e

.

Authorlty Recognition Accuracy
File Training Set Test Set
Depth No. Correct| 7 Correct No. Correct| % Correct
1 29 48.3 21 35.0
2 51 85.0 48 §0.0
3 54 90.0 46 76.7
4 59 98.3 43 71.7
5 58 96.7 44 73.3
6 60 100 46 76.7

Training Set - Random selection 1,6 samples per class
Test Set — Remaining 60 images, 6 per class

Table 3.3 Facial Profile Recognition Experiment 3 Results

Authority Recognition A.curacy

File Training Set Test Set

Depth No. Correct | Z Correct No. Correct 7 Correct
1 34 56.7 28 46.7
2 53 88.3 38 63.3
3 57 95.0 43 71.7
4 59 98.3 47 78.3
5 60 100 45 75.0
6 60 100 45 75.0

Training Set - Random selection 2, 6 samples per class
Test Set - Remaining 60 images, 6 per class

Table 3.4 Facial Profile Recognition Experiment
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Authority Recognition Accuracy
File Training Set Test Set
Nepth No. Correct | % Correct No. Correct | % Correct

- s
et e 8

1 62 68.9 21 70.0

2 73 81.1 22 73.3
3 84 93.3 25 83.3
& 83 92.2 27 90.0
5 89 98.9 23 76.7 !

6 88 97.8 22 73.3

7 88 97.8 25 83.3

8 920 100 23 76.7

E 9 90 100 26 86.7 j
g ;
e !
:
i Training Set - Random selection 2, 9 samples per class B
4 Test Set - Remaining 30 images, 3 per class !
{
Table 3.5 Facial Prcfile Recognition Experiment 5 Results .
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N e e

It was initially felt that the results discussed above did

not have sufficiently high recognition accuracy, and because of the

excellent recognition accuracy obtained by Dudani with a moment in-
variants feature extractor, it was decided to replace the circular
autocorrelation function with moment invariant functions. The six
moment invariant functions given in Section 2.5 were used twice, once
on the image boundary and once on the silhouette, to obtain a
12-dimensional feature vector. The classification alpgorithm was

modified to use the weight function and the feature vector normaliza-

N

Qe A
X A

tion used by NDudani's aircraft recognition classifier. The last

three facial profile recognition experiments were then repsated with

e A g ]

no other changes. Tvpicul feature vectors are given in Table 3.6.

The results are given in Tables 3.7 -~ 3.9. The iow recogni-

g
4
3
ﬁﬁ

i
L3

tion accuracies on the test sets were totally unexpected. Recognition

£

BB AR

o

accuracies were, in all but one case, lower than those obtained using

£

AoH

circular autocorrelation. There mav be two reasons for this result.

sancion g

N

The class-to-class shape variations are often more subtle for facial

e
el b A0k

profiles than for aircraft silhouettes, and due to the idiosvncracies
of the television camera used for input to the computer, facial pro-
files exhibited more variation fium sample to sample within a given
class than the aircraft images. Under these conditions circular

autocorrelation seemed to provide feature vectors with hetter separa-

TS s e sty Dt i

bility between classes than the moment invariants did.
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Table 3.6 Typical Moment Invariant Feature Vectors
Feature Vector

Class I—7 2 3 4 5 6
1 .55 .555x1071 .186x10"1 -.577x1073 .984x10"2 -.159x107>
2 .622 .818x10~1 .339x1073 .148x10™° -,267x10"3  ,160x107°
3 468 .758 .220 624x1071  -.113 -.647x1071
4 672 .137 .701x10°2  -.384x107% -.171x1072  .214x1073
5 .641 .629x1071  .goox10”!  .151x1072  .638x10"1 .547x1072
6 .618  .129 .206x107 1 -.151x1072  .932x1072 -.103x10-2
7 519 .595x1071 .133x1071  .124x1073 -.194x1072 ..350x103
8 .505  .477 .199 .540x10"1  -,326x107! -.128x107*
9 635 132 420x1073  -.937x107% -.125x1973  .299x1073
10 .548  .162 .256x1071  .150x1072  .124x1071 .678x1073

Feature Vector

Clas: 7 8 9 10 11 12
1 707 .876x1071  .765x1072 .289x107% .342x1072 -.196x1073
2 780 .102 .291x10"1  ,146x1072 .128x10"1  .625x1073
3 .18 .40 .218 .285x10"  .182 .582x107}
4 762 .219 .368x1071  .124x1072 -.217x107  .306x1072
5 .730  .107 .197x10°1  .735x1073  ,568x1072 -.542x1073
6 772157 .489x1071  429x1072  .319x1071 .128x1073
7 721 .422x1071 ,282x1072 -.124x107%  -.180x1072 -,283x10™%
8 645 .392 .675x1071  .949x1072  .480x10"1 -.242x1072
9 .766 .163 .276x1071  ,954x1073 - .988x1073 -.157x1072
10 737 .646x1071  ,835x1072  .124x107% -.933x1073 .193x1073
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Table 3.7 Moment Invarfants Recognition Experiment 1 Results
Authority Recognition Accuracy
File Training Set Test Set
Depth No. Correct| % Correct No. Correct| % Correct
1 33 55.0 22 36.7
2 40 66.7 23 38.3
3 47 78.3 36 60.0
4 56 93.3 29 48.3
S ] 100 29 48.3
6 | 60 100 32 53.3

Training Set - Random selecticn 1, 6 samples per class
Test Set - Remaining 60 images, 6 per class

Table 3.8 Moment Invariants Recognition Experiment 2 Results

Authority
File
Depth

1
2

DV W

Recognition Accuracy

Training Set Test Set
No. Ccrrect |Z Correct No. Correct! X Correct
37 61.7 25 41.7
46 76.7 30 50.0
56 93.3 26 43.3
58 96.7 33 55.0
60 100 27 45.0
60 100 31 51.7

Training Set - Random selection 2, 6 samples per class
Test Set ~ Remaining 60 images, 6 per class
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? Authority Recognition Accuracy
4 File Training Set Test Set
e Depth No. Correct] % Correct No. Correct| % Correct
1 36 40.0 10 33.3
f 2 56 62.2 14 46.7
3 68 75.6 16 53.3
: 4 74 82.2 15 50.0 |
5 5 82 91.1 21 70.0
6 87 96.7 19 63.3
7 90 100 19 63.3
8 90 100 17 56.7
9 90 100 19 63.3

Training Set ~ Random Selection 2, 9 samples per class
Test Set ~ Remaining 30 images, 3 per class

Table 3.9 Moment Invariants Recognition Experiment 3 Results
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In order to determine whether the results of the above experi-

oreni]

ments were acceptable, it was decided to compare the recognition

sooeel

accuracy of computer facial profile recognition against that of humans

presented with the same data. Since humans are generally regarded as

good pattern recognizers, it was felt that if the machine performed

comparably to a human the pattern recognition system would be acceptable.

oinnt sernant

Accordingly, the following experiment was devised. A facial profile

? photograph of each of the ten subjects was taken. These photographs

1

§ became the human recognizer's "authority file."” Three people were

chosen for this experiment, the first two technically oriented and

E close to this work, the third non-technically oriented and unfamiliar
with this work. Each person was given the set of reference photographs
and seated in front of the Tektronix 611 display. The facial profiles
after edge extraction, as presented in Apnendix B, were selected at
random and displayed on the CRT one at a time. The recognizer was

given as lonpg as he wished to make a classification by comparing the

@ty

CRT image against the photographe. All 120 facial profiles were used,

[Ty
4

but because of limited disk storage samples 1-6 (on all classes) were

N et o LA M o

presented first, and then samples 7-12.
The recognition accuracies of the three human recognizers are
given in Table 3.10. Tt can be seen that the recognition accuracy on

samples 7-12 is higher than the recognition accuracy on samples 1-6.

There are two possible reasons for thf ; the recognizers may have had

..

- some difficulty in correlatine the CRT images to the reference photographs,

- i.e., some early misclassifications were due to learning, and the larger
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sample-to~sample variation within a given class for samples 1-6 may have
reduced the human recognizers' accuracy. In any case, comparing these
results with the computer results, it can be seen that using circular
autocorrelation the computer at least matched the human recognition accu-
racy in all but experiment 2, while the results of experiment 5 indicate
that with a sufficiently large training set it is possible for a computer
pattern recognition system to achieve significantly higher recognition
accuracy than a human on this problem. The best recognition accuracy
obtained with moment invariants (70%) is comparable to human recognition
accuracy on the 120 images (68-71%), a result similar to, although not

quite as geod as, that obtained by Dudani on aircraft recognition [5].

M S gdrzniy

Recognition Accuracy

Subject Samples 1-6 Samples 7-12 Samples 1-12

0. Correct[ ? Correct|No. Correct, # Correct |[No. Correct] %2 Correct

1 39 65.0 46 76.7 85 70.8
2 38 63.3 44 73.3 82 68.3
3 38 63.3 46 76.7 84 70.0

Table 3.10 Human Facial Profile Recognition Accuracy
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3.2 Automatic Training

In the following chapter, the selection and parameter optimiza-
tion of two deterministic feature vector classification schemes will be
discussed, while in this chapter the problem of building the authority
file for the classifier will be addressed. It is the authority files'
contents and depth (number of vectors) that determines the decision
surfaces. If the feature vectors are well defined, or a sufficiently
large sample size exists, the authority file vectors and depth for
optimal recognition accuracy may be determined by computation (indeed,
the authority file concept is not even necessary; one may write a
set of equations describing the decision surfaces). However, cutside
of a theoretical analysis, this is seldom the case. The problem then
is how, with the data available, are the authority files to be generated?
The construction of the authority file is referred to as training.

Duda and Fogsom [44] have described an algorithm that computes an
authority file vector for linearly separable data, i.e., the classes

in the feature vector space may be separated by hyperplanes. Feature
vectors generated by present feature extractors, however, tend not to
fall in such neat classes, and in general a fairlv convolved decision
surface is required to separate the classes. Such a convolved decision
surface may be ohtainec by using authority file depths greater than
one. The authority files muy be filled with vectors selected from

some training set, i.e., feature vectors generated from a typical set

of images to be recognized. The selecticn criterion is to obtain the
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set of vectors that give the greatest recognition accuracy. The feature
vectors selected to fill the authority files then determine the decision
surfaces.

For a practical pattern recognition system operating in a chang-
ing environment, some sort of adaptive decision surface is desirable.
This suggests a classification routine that is able to adjust its
authority files to obtain a more nearly optiuum set of decision surfaces.
Such a routine should also be able to add new classes if necessary.

Each classification attempt then, by such a pattern recognition system,
would have the potential of changing the authority files (and hence
decision surfaces) to adjust to new data. Two algorithms to provide

this automatic training are discussed in the next section.

3.3 Two Training Algorithms

Consider a classifier of the nearest neighbor or distance
weighted k-nearest neighbor type with authority files of depth n.
A random feature vector is applied to the classifier and a classifi-
cation made. If the classification 1s correct, the closest (Euclidian
distance) vector in the authority files to the unknown vector that is
also in the same class as the unknown vector is moved to the top of
its authority file. 1If tle classification is not correct, the unknown
vector is ‘pushed' on top of the appropriate authority file. All other

vectors in this file are pushed down, and if the file is full, the

bottom vector will be lost.
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Under these rules the most 'important' vectors, i.e., those
used most often in identification and that define 'critical' areas
of the decision surfaces, will 'hubble' to the top of the authority
files, while the vectors seldom used in identification will 'sink' to
the bottom of the file. When a vector i1s incorrectly classified, its
insertion into the authority file redefines the decision surface so
that the misclassification will not occur again. If the authority file
is full, it is the least used vector that will be lost when a new
vector is added because of the hubble action descrihed ahove.

A variation on this technique is to associate a counter with
each vector in the authority files. Again, a random feature vector is
applied to the classifier and a classification made. If the classifi-
cation 1is correct, the closest feature vector in the authority files
to the unknown vector that is also in the same class as the unknown
vector has its counter incremented. If the classification is not
correct, the vector in the appropriate authority file with the lowest
number in its counter is replaced by the unknown vector and the counter
is reset.

The effect of this rule is similar to that of the bubble sort

rule described above. Authority file vectors with the highest ‘activity,'

i.e., those used most often in classification, are retained, while
seldom used vectors are removed so that a new, and nerhaps more impor-
tant vector mav he added. These two authoritv file sorting rules do

require a 'teacher,' since the classification cf the 'unknown' vector
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| Ganaten

must he known to be correct or not, and if incorrect the class of the

'unknown’' vector must be know so that the correct authority file may "1

nique was run for 500 random selections from the training set and then

be modified. These requir:ments are not restrictive if these rules -
. are used when the authority files are first filled from a training set, )
§ but if the authority files are to be modified when the pattern recog- :
? nition system is operating, some sort of feedback as to the correctness .
% of the classification must be provided. The first application, that -
2 of initial training, is investigated in the following sections, while
% the second application of these sorting rules, that of decision sur-
E face modification during operation, is left for future research.
E? 3.4 An Experimental Comparison
% A simple experiment was performed to verify the expected
i performance of the two authority file sorting rules. The circular |
.% autocorrelation feature extractor and the di:.ince-weighted k-nearest .
-i neighbor classifier were used. Authority file depth was set to three. i
i The training and testing set was samples 1-6 of the facial profile ‘g
r% images for each of the ten classes. In the first test, the authority §
% files' contents were adjusted manually by cut-and-try method to obtain %
%K the best possible recognition accuracy. Next the hubble sort tech- %
. i
2 %

%

tested. Then ti.c aciivity sort rule was run for 500 random selections

NP e £ A

and tested. The results are showa in Table 3.11. The samples to train

column indicates the point (in number of random inputs) after which the

authority files began to 'oscillate.' Since some authority files were
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e At

not deep enough to hold all the vectors necessary for 100Z recogaiticn

accuracy on that class, the lower importance vectors would swap ox

T

oscillate in and out of the files. At this point, ro furthor increase ¢

in recognition accuracy could be obtained. .
i

f; Authority | Samples Recognition Accuracy é’
% Test | Sort File to No. Correct|Z Correct | No. classes P
% No. | Type De>th Train 100% corcect :
& .3
| 1 | manual | 3 - 49 81.7 7
"l‘ '.
4 2 | bubble | 3 111 48 80.0 6
A 3 | activity| 3 111 52 86.7 6 :
5 s
¥4 -
£ | 4 | activity] 4 179 59 93.3 9 :
pa” H ";'
5 | activiey| 2 181 43 7.7 3 '
3 Table 3.11 Sort Algorithm Recognition Accuracies :
'.. "' g
23 : 3
‘I

s ;
b | From Table 3.11 it can be seenr that the manual and bubble sort ;
; ; produced about the same recognition accuracy, while that of the acti- 1
3 ‘- vity sort was slightly higher. One reason that the activity sort per- %
'{ : formed be2ter than the hubble sort may be because of the inherent ;
[: : i
X 1 integration provided by the activity sort counter. Consider, for i
g example, an authority file which contains a vector that is often used

B3 !

2 i

f (i.e., is the closest to the input vector) in classification. Suppose

& novw an input sedquence occurs in which the other vectors in the authority

|

i ) file are used and hence bubble to the top of the file, or several

}} -; misclassified vectors are inserted into the file. If this occurs the

5 -
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important (often used) vector may end up at the bottom of the authority
file and he pushed out by the next vector inserted. Since the input -
sequence is random, such & sequence is most iikely to occur for small -
file depths. With the activity sort an often used vector will build

up a count significantly larger than less important vectors, and an

4 input sequence that did not use this vector would have to be long
enough to build up the ccunts of the other feature vectors to values -‘

greater than that of the 'important' vector before it would be replaced.

Since a longer input sec-ence of this type is required, it is less

3
——

B likely to occur and the activity sort files remain more stable.
£ .
§ The autometic training rules were not able to match the manual |

selection of feature vectors for the number of clagses 1007 correct.

which i{s not surprising since the automatic routiies were designed to -

AR

:% ontimize the total recognition accuracy without regard to class. !
i Table 3.12 shows the recognition accuracy of the three methods for each

P
2 class. Included in Tables 3.11 and 3.12 are two training attempts with g i
% the activity sort rule for authority filc depths of 2 and 4. The ,
'f recognition accuracy behaved as expected, lower for a depth of 2 and E

: higher for a depth of 4. Notice that the number of innuts required to :
s P
4 train the authority files increases for depths of 2 and 4. For a file

9 .
4 depth of 2 or 4 and a random input selection with a uniform probabi-~ !

E % lity density function, an average of 3 passes through the input set )

: % is required before the activity file contents start to oscillate. .
e
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Test necognition Accuracy, % Correct/Class
No.

1 2 3 4 5 6 7 8 9 10

1 50 100 100 100 100 50 1.7 100 100 100
2 50 100 100 83 100 67 0 100 100 100
3 50 100 100 83 100 50 83 100 00 100
4 83 100 100 100 100 100 100 100 100 100
5 33 83 100 83 67 50 50 1¢0 50 100

Table 3.12. Sort Algorithm Recognition Accuracies per Class

The activity sort rule ha~t a feature which may be useful if it
is to be used to maintain the authority files in an operating pattern

recognition system. It can be seen that under such conditions the

counts associated with some vectors mav become very large. The activity

sort rule may he modified to divide the contents of all counters for a
given authority file by a constant when any count in that file exceeds
a preset value. This technique tends to give the authority files a
certain 'forgetfulness.®' Any authority file vector that is not the
closest vector to the unknown (i.e., that does not have its counter
incremonted) a certain number of times for some number of classifica-
tions (depending on the values of the constants) will hav-~ its count
redured to zero by the divisions and will be c:"ased when a new vector
is entered. Because of its high recognition accuracy and the potential

for implementing this limited memory time feature, the activity sort

rule was chogen to fill the authority files in the remaining work.
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3.5 A Large Sample Size Experiment .

&

Although the activity sort automatic training algorithm seemed -

o

Ty

ettty

to perform well in the experiments described in the preceding section,

there were two major flaws in these experiments. The input sample 3ize

gl
Ty

was reaily too small to determine conclusively how well the training

SRR

algorithms worked, and the test samples were the same as the training ..
samples rather than independent data. It was decided to undertake an -

experiment using the data and pattern recogaition routines of Dudani

(5], with the activity sort rule for authority file construction, to

obtain a more meaningful measure of the algorithm's performance.

Dudani addressed the problem of automatic aircraft identification. N

i
¥

33
k.
3
3
A
‘
7

He defined a six-class problem and used a moment invariant feature ex-
tractor. The six authority files consisted of 551 12-tuples each.

The authority files were obtained from images of the aircraft at roll
angles from 0 to 90° and azimuth angles from -70 to 70°, both in
S-degree increments. The total number of vectors in the uuthority files

was thus 3306. . distance-weighted k-nearest neighbor classifier was

used. DNudani's test set consisted o 132 images obtained independently
and in addition to the 3306 images used in the authority files. Of the !
E 132 test images, 22 imaces were from each of the six classes, with random

roll and elevation angles. The performance of the original system is !

AN

shown on the first line of Table 3.13. The last column lists the image

numbers from the test set that were incorrectly classified.
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Authority | Training Recognition Accuracy | Incorrectly Classified
File Depth|Samples No. Correct| 7 Correct Test Image Numbers
551 —~——— 126 95.4 4,23,31,83,125,130
184 3000 116 87.9 4,5,16,18,23,31,41,
61,62,118,122,125,
128,129,130,131
184 6000 121 91.7 16,23,31,64,75,90,
125,127,128,130,131

files.

of their original size, from 551 to 184.

Dudani's 132 independent test images.

shown above in Teble 3,13.

authority files (92% versus 952).

accuracy was again tested with the 132 test images.

T A L R S

Table 3.13 Activity Sort Rule on a Large Training Set

To test the activity sort training rule, the authority file
depths of Nudani's classifier were arbitrarily reduced to one-third
Tr2 activity sort rule was

used to pick the new authority file contents from the training set

by the training slgorithm, the recognition accuracy was tested with

The results are

recognition accuracy was approaching that obtained with the 551-deep

consisting of the 3306 vectors which comprised the original authority

After 3000 random sampies from the training set had been examined

The training then continued for

another 3000 random samples from the training set and the recognition

It can be seen that after 6000 samples the

It is interesting to note that test

image numbers 23, 31, 125, and 130 are missed in all cases; this might

S ez it o
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indicate the presence of inaccurate training or test data. In Table

3.14 the number of vectors in each authority file and the number of -
samples in each class presented to the training algorithm during =
training is given at 250-sample increments. It can be seen that the
number of samples of each class presented to the training algorithm
remained fairlv equal. The number of vectore in the authoricy files
versus the total number of input samples during training are graphed

in Figure 3.2. The authority files seem to have filled at a logarith-
mic rate. Note that the authority files were not full when the experi-
ment was terminated and that the number of vectors in each file varies

considerably from class to class.

The experiment was terminated after 6000 training samples
because of the computation time involved (60 hours on the PDP-9
computer). It would have been desirable to continue until the author-
ity files were full, or to reduce the depth of the authority files
(to, say, 50) to determine exactly which vectors would be saved and
the recognition accuracy then achieved. This experiment does show,
however, that the vectors selected by the activity sort rule will

provide good recognition accuracy wheu tested on an independent test set.
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3 CHAPTER 1V

2 .

o SYSTEM OPTIMIZATION

3

b 4.1 Introduction .

ke This chapter concerns itself with the optimization of the )

£

% circular autocorrelation feature extractor, a compariscen of the

gé nearest neighhor classifier and the distance-weighted k-nearest

A neighbor classifler, and the need for normalization of the feature .

3

A vector. A demonstration of the tramslation and size invariance of .

53 the circular autocorrelation function is provided. The behavior

£ of the circular autocorrelation function under rotation is also

R

] demonstrated. The circular autocorrelation function performance 1

s i

5 for various values of paranmeters ap, M, and N {3 investigated.

‘§ The 120 facial profile feature vectors generated with the chosen »I g
% an, M, and N parameters are listed. ‘l

Two distance-weighted k-nearest neighbor classifier weight
;; functions are described, one dependent upon the Euclidian distance
between the unknown feature vector and the authority file vector,

epq’ and the other dependent upon (epq)z. Recognition accuracy of a Lt

classifier using each function is obtained. The rerognition accuracy 1

of a nearest neighbor classifier is compared to that of a distance
-weighted k-nearest neighbor classifier. Normalization of the feature
vectors before classification is discussed, and the mean and standard

66
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deviation of the 12 circular autocorrelation feature vector components
over the 120 facial profile samples are computed.

Although the feature extractor and classifier are discussed in
geparate sections, the development and optimization of both occurred
gimultaneouslv. It should also be pointed out here that the two al-
gorithms interact to some extent, making optimization a very difficult

task.

4.2 Circular Autocorrelation

After the circular autocorrelation function feature extractor
was written, it was felt that an experimental demonstration of size
invariance and behavior under image rotation was in order. It was

decided to arbitrarily set the circular autocorrelation parameters at:

Mwuw]l
N =12
a, = 1/2
so that
A n(n-1)
u=-z cos( —~ ) (4-1)
Ire
va=lA sin(-z'«(-t—‘-:l'-l ) . (4-2)
2 12
The area A was computed as:
A=) ] f(my,ny) (4-3)

MMaco [YW=00
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that is, the sum of the one cells. The actual g(l,n) output was
multiplied by 100 and rruncated. It was felt that this would be
sufficiently accurate and allowed integer arithmetic to be used in

the classifier. This may be written as:

gl = [ 22 gu,m] . (4-4)

A simple experiment was performed to verify the theory and
alsc to obtain an idea of the amount of feature vector variation to
be expected for real images. A white rectangle 9" x 12" was placed
in front of the television camera and the feature vector for various
rotation angles waa computed. The results are shown in Table 4.1 as
samples number 1-17. The numbers in the area column are the total
number of one cells in each array. The feature vector of sample
number 1 was used as the authority file vector. Since a rotation of
the input image by n/N radians (in this case #/12 radians or 15°)
causes the circular autocorrelation feature vector components to
rotate (see Section 2.5 and Eqs. 2-50 and 2-51); each unknown feature
vector must be compared against the 12 possible variations of the
authority file vector to find the best match. The numbers in the
clogest match, angle, and error2 columns refer to the n/12 radian
rotation (angle) for which the smallest Euclidian distance squared
(errorz) between the unknown and sample number 1 was obtained.
Because of the rectangle's symmetry, the circular autocorrelation

function feature vector of the rectangle should also be symmetric,

ks v
o s o ’. - . g 12, i .
i e R R LR e S BT PTG T o

B por R 00
3 & ¢

e

’
- ———AA R it e

S -




i i B R, b b ST N SN 73 S B AN LA
S R S R SR R e

-3

B

LY

Bl o e 4o Rkt Yl o g S

Erensl

4 ]

‘\I.‘v\ﬂki

S

b K A Bt A e K i B
Q@ wwtaray
PR

T R YRR T R YO

aw

>m

B T e D A T B YA D R e A A R T IR e« ACATRRRETT

69 ?

g(l,n) = g(1, 14-n) (4-5)

that is:

for n = 2,3,4,5.
That this fes.ure vector symmetry was not quite achieved points to
distortion in the input system.

It can be seen from Table 4.1 that the error for images 3-6
1s considerably larger than that for images at n/12 radian rotation
increments. This is to be expected since the feature vectors for
images rotated at other than n/12 increments will not, in general,
directly correspond to the zero radian feature vector (see Section
2.,5). The other errors are probably due to input distortion, and
give an idea of the ultimate accuracy of the system. Size invariance
was tested by moving the camera farther from the rectangle and ob-
taining two more images. These are given as samples numbered 18
and 19 in Table 4.1, The area of these two images was reduced by
ahout a factor of 5 from the other images, producing images less than
one-half the size of the comparison image. As can he seen from the
table, there was little change in the feature vectors.

Once it was verified that the feature extractor was perform-
ing as expected, the next step was to optimize the values of an, M,
and N. This was attempted with the following experiment. An input
gpace of 60 facial profile images, 6 images per subject, for the 10
subjects was chosen. A classifier of the distance-weighted k-nearest
neighbor type with k fixed at 10 and the (epq)2 dependent weight

function (to bhe described in the next section) was used. The classifier

e
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searched only the zero angle feature vector sequences, that 1is,
rotatioaal invariance was not attempted. The authority file depthy
were set to three, {.e., three frature vectors per class were used to

define each decision surfarce, and the authority files were filled

using the activity sort trainings algorithm (described in Chapter III).

Six sets of values for a s M and N for the circular autocorrelation

function wvere then compared by training the machine on the circular

autocorrelation feature vectors derived from the 60 images and testing

the recognition accuracy of the machine using the same 60 images.
The results of this experiment are summarized ir Tables 4.2 and 4.3.
Typical feature vectors for parameter sets 1, 3, 4, and 5 are given
in Table 4.4, while Table 4.5 contains the feature vectors for all
120 facial profile images for parameter set 2; a, = 1/2, M=l, N=12,
From Table 4.3 it can be seen that subjects 1, 6, and 7 were
consistently misclassified as belonging to another class for all
parameter sets and subiect 9 was misclassified for 4 of the S sets.
There was no apparent patteru to the misclassifications t seems
that these particular images are in some way more 'variable' than
thz other imapes and the region in the feature vector space to w:ich
they belong is harder to detine. The low recognition accuracy of

parameter sets 1, 3, and 5 is not surprising when the vectors in

Table 4.4 are examined. For parameter set 1 (a~l = 1) there are severil

zero terms in the feature vector, terms which contribute no information,

while for parameter set 3 (aﬁ = 1/4) the terms of the feature vecturs

exhibit little variat.on from class to <lass. The recognition accuracies
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_i ParameteJ Qecognition Accuracy .
= Set a M N No.CorrectiZ Correct{No. of Classes
] 1007 Correct
4 1 1 1 12 47 78.3 5 .
. 2 1/2 1 12 52 86.7 6 \
,Af \"‘. {
e . 3 1/4 1 12 49 81.8 6 ’
L
2 4 1/2,1//2 2 6 51 85.0 6 ;
: 5 /3,1 2 6 50 83.3 5
Table 4.2 Recognition Accuracy for Selected Circular Antecorrelation .
Function Parameters.
Parameter Recognition Accuracy, % Corrcct/Class
Set 12 3 4 5 6 7 8 9 10
1 50 100 50 100 100 50 50 100 83 100
2 50 100 00 83 100 50 83 100 100 10O
3 50 100 100 100 100 67 50 100 50 100
4 50 100 100 160 100 &7 67 100 67 100
5 50 83 100 100 100 &7 67 100 67 100
Table 4.3 Recognition Accuracy per Class for Selected Circular Auto-
cor. elation Function Parameters.
%
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5 wa Para- Feature Vector Component, n
= meter Clasg MmO Gy Gy (5 B
;i 3 Set 1 2 3 4 5 6 7 8 9 10 1 12!
% |1 1{0 9 o o0 10 312 35 18 5 0 0 o%
ke - H
g_ 3 1 /48 51 52 58 64 68 70 69 66 57 SO 495
. ] 4 116 16 45 58 37 13 (0) (1) (36) (57 2D (5|
5 5 1131 39 57 64 56 35 (0) (4) (31) (54) (25) (&)
?- r 1 20 6 0o 0o 8 27 4 2 8 0 0 0
‘ 3 2 i 4 44 48 S6 62 67 70 68 63 55 47 43
; 4 2 ; 4 8 38 59 35 11 (0) (2) (27) (55) (25) (3)
; 5 2.2 3 54 63 53 32 () (M) (20 (5) (2B @
i. y 3 g o 0o 0o 1 23 20 13 7 5 0 0 0
3 3 i 38 41 47 56 62 64 63 59 53 47 38 36
: 4 3 E 7 15 42 41 28 11 (0) (6} (36) (36) (22} 16)
¥ 5 3 5 23 35 54 53 41 25 (9) (4) (32) (31) (18) {3)
i 1 & 0 0 0 0 9 19 30 28 15 06 0 O
Z 3 4 40 41 44 49 S& 60 63 67 &5 ST 49 43
- 4 G049 30 50 40 10 (0) (4) (23) (47) (31) (&)
: 5 4 123 28 44 S6 56 32 (0) (3) (21) (44) (30) (3)
- 1 s{0 0 ©0 0 13 32 2% 17 & 0 0 0!
] 3 5 4k 47 53 61 67 68 66 64 S8 SL 47 45
) 4 517 16 46 56 28 13 (0) (6) (39) (54) (20) (6)
. s 5 129 40 60 59 48 34 (0) (5) (37) (31) (1) (%)
.- i 1 6 {0 o0 o 1 13 31 32 20 6 0 0 0
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Para- Feature Vector Component, n
meter Clas M (@2 ) @B (5) ®
Set 1 2 3 4 5 6 7 8 9 10 11 12
4 6 | 4 10 39 52 27 o (0) (4) (33) (48) (20) (&)
5 6 |21 346 53 59 46 28 (0) (3) (28) (45) (16) (3)
1 7 0 c Y 0 5 26 40 29 8 0 0 0
3 7149 51 54 59 65 76 71 71 68 59 54 S%
4 7 6 12 39 64 41 15 (0) (5) <(30) (61) (31) (6)
! 5 7 |3 38 58 67 60 38 (0) (3) (277 (58) (28) (4)
; 1 8 0 0 0 0 13 22 20 19 13 0 0 0
; 3 8 |4 50 52 53 55 54 52 54 54 50 45 48
4 8 {11 20 40 35 20 15 (1) (12) (37) (36) (13) (8)
5 8 |31 40 47 44 42 37 (0) (11) (37) (58) (12) (D)
1 9 0 0 0 1 12 25 36 24 10 0 0 0
3 9 [40 44 48 S4 58 64 66 67 60 53 45 &2
4 9 3 10 23 52 32 10 (0) (3) (24) (48) (24) (3)
5 9 |26 3% 47 58 49 31 (0) (2) (21) (467 (20) (2)

1 i0 0 0 0 1 4 14 32 30 13 1 Y o
3 10 (42 43 44 48 55 60 61 62 59 53 4% 45
4 10 9 15 31 49 40 19 (0) (8) (22) (46> (30) (8

5 10 128 31 46 54 51 38 (0) (6) (19) (41) (27) (6)

Table 4.4 Typical Feature Vectors for Selected Circular Autocorrelation
Function Parameters.
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of parameter sets 2 and 4 are about equal--the limit here may be the
dimension (MN) of the feature vector. It was decided not to investli-
gate larger dimension feature vectors and on the basis of its recog-
tition accuracy and simplicity, parameter set 2 was chosen to be used

with the circular autocorrelation function in the remainder of this

work.

4,3 Comparison of Some Classification Algorithms

In attempting to decide on the type of classifier tc be used
in this pattern recognition system, statistical classifiers weres re-
jected because the feature vector sample size was toc small to determine
the necessary nrobhability densities. Of the non-statistical classi-
fiers the nearest neighbor rule and the distance-weighted k-nearest
neighbor rule were selected as the most likely candidates to give good
recognition accuracy. Starting with the distance~weighted k-nearest

rielghbor rule, a simple weight function was used:

5
w o= 1 for 0 < e__ < 500 (4-6)
Pqa (e + 1T = %aq =
Pa
= 0 f > 500
Yoq or epq
3
T = z 10 *summed over the k 4-7)
* (e?q + 1) smallest epq's < 500.

k was fixed at 10, so that only the ten lowest epq's were used in the
weight computation and therefore only the ter highest weights computed;

all other weights being set to zero. This weight function will tend

to give:
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100 £ >0
¥pq * °F €pq

0 + 1000
wpq > for epq

wpq + Vs for epq e .

The above relations show that this weight funciion satisfies the
critersa for a distance-weighted k-nearest neighbor classifier weight
function as expressed by Dudani [5]. The evidence of an authority
file vector close to an unknown input vector should bhe weighted

more heavily than the evidence of another authority file vector
which is at a greater distance from the unknown. This is accom~
plished by having a weight function which varies with the distance
between the unknown and authority file vector in such a manner that
the weight decreases for increasing unknown to authority file vector
distance. The above relations deteriorate as the distance between

the unknown and the authority file vector increases (as e__ approaches

Pq
1000). Any error (distance) above 500 is considered large enough to
make any correspondence between the unknown and authority file vector
unlikely and thus its corresponding weight is set to zero.

With k set to 10, authority files of depth 3, and a feature extractor
with parameter set a, = 1/2, M= 1, and N = 12, the classifier was

tested on facial profile images 1-6 of each class.

The authority file vectors were selected to give the best

recognition accuracv on the same 60 images and the result is given

- e IR PN g il Yo fbiagif e il s o a2 3 -l ipatagint vy L
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in Table 4.6 as test 1,
In examining the results of the experiment, it was noticed
that the weight function sesmed to assign too large values to terms
with large errors. Correspondingly, the weight function was modified to;

5
Sp— for 0 < (e )% < 500 (4-8)

((epq)2 + 1)T
2
= ()
W for (epq) > 500

w
pq

P
1 3
T= X ————i;:- -—  *guymmed over the k (4-9)
*((e_ 3+ 1) smaliest e“ 's < 500
pPaq pa -

All othuer parameters were held constant and the experiment repeated.

The result js given as test 2 in Tab%e 4.6. A significant improvement
in recognition accuracy was obtained, and therefore this weight function
was used for all subsequent work,

With the weight function for the distance~weighted k-nearest
neighbor classifier selected, a comparison of this classifier and the
nearest neighbor classifier was nerformed. For the feature extracror
parameters a, = 1/2, M =1 and N = 12, k = 10 for the distance-weighted
k-nearest neighbor classifier, and an authority file depth of 3, both
classifiers were trained and tested on the full set of 120 facial profile
images. Training was accomplished using the activity sort algorithm
discussed in Chapter III. The results of this experiment are shown in
Tables 4.7 and 4.R., It can be seen that the results are very similar
for the two classitiers, but influenced bv che higher number of classes

classified 100% correctly and the work of Dudani [5], the distance
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g Y
4 Test Weipht Recogniton Accuracy “

e Number Function | No. Correct 7 Correct

4 1 Fq. (4-6) 45 75.0 i
2 2 Eq. (4-8) 49 81.7 —

w

Table 4.6 Weight Punction Comparison for the k -Weighted Nearest
Neighbhor Rule.

P
1

Classifier Recopnition Accuracy
Type No. Correct| 7 Correct| No. of “lasses
1007 Correct

NN 98 81.7 4

k-NN 98 81.7 5

Table 4.7 Recognition Accuracy for Two Classifier Types

Classifier Recognition Accuracv, 7% Correct/Class -
Type 1 ? 3 4 5 6 7 8 9 10 B
NN 75 83 67 100 83 83 58 100 75 92 .
k-NN 5% 83 67 83 100 83 67 100 75 100 -
Table 4.8 Recognition Accuracy per Class for Two Classifier Types -
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Feature Vector
Component, n

Mean

Standard
Deviaticn

1n

11

5.01

6.65
12.03
21.87
35.98
47.80
51.74
44.48
32.91
19,93
11.67

7.38

2.72
2.43
2.76
3.76
5,75

8.48

3.21
3.27

2.96

Tahle 4.9 Feature Vector Component Means and Standard Neviations
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weighted k-nearest neighbor classifier was chosen to he used in the
remainder of this work.

In this discussion of classification algorithms, no mention has
been made of feature vector normalization. Feature vector normaliza-
tion was not used in this work for two reasons. First, from the means
and standard deviations of the facial image vector components of
Table 4.3, given in Table 4.9, it can be seen that the standard
deviations are all of the same order of magnitude, indicating that a
component-by-comnonent normalization would yield little, if any, gain
in recognition accuracy. Second, there is no evidence that a vector
length normalization was warranted. A vector length rormalization
would leave the classification dependent only ups. the angles between
the unknown and the authority file vectors.

Based upon the results of the experiments described in this
chapter, the circular autocorrelation parameters were set at ap = 1/2,
M=1and N =12, It was noticed that for weight equations (4-8)
and (4-9) usually onlv the first 5 nearest neighbors had significant
weights in the k -weighted nearest neiphbor classifier. The distance
weighted k-nearest neighbor classifier parameters were thus selected

as weight equations (4-8) and (4-9), and k = 5.
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CHAPTER V

Fe 3]
X%

v
R e
éz st s

SUMMARY

|} 5.1 Summary of Results

This thesis has presented a series of experiments on two-

R R A

dimensional pattern recogrition leading to a system capable of

S,

recognizing human facial profiles. A comparison of two feature ex-

.
P I

traction techniques wes made, one of which has been used previously

5

i 1, in an operating system, the other original to this work. Two deter- ;
g‘ {- ministic classification algorithms, a piecewise linear classifier and ;

g o a non-linear classifier, were compared. Two heuristic training rules

% X for authority file vector selection were described and shown to provide f

1 decision surfaces for good class separability. The recognition accu- i
L racy of the final system was found to be at least as good as that of §

g - human recognizers presented with the same data. ¥ 3
_ - The circular autocorrelation feature extraction technique de- i ?
1 1 veloped in this thesis was shown to be invariant under image size ;

% ] change and translation, and to have predictable behavior under image

ﬁ-.»v.w’

rotation. Several experiments were performed to determine the optimum

<

Rramane,
RO

constants for this function and it was found that for a 12-dimensional
feature vector a constant racius of one-half the sguare

root of the imsge area and angle increments of 15 degrees gave optimum ;

| ormt

results on the test images. The radius constant was found to be not

egted

85
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critical, but for values less than one-half, the feature vectors
seemed to have less variation from class to class; forlvalues greater
than one-half, several feature vector c/mponents were zero. In both :
cases the recognition accuracy was reduced. 1
The moment invariant feature extraction technique described by
Hu [25] and used by Dudani [5] was also used for facial profile recog-
nition. In all cases the maximum recognition accuracies obtained using
a moment invariant feature extractor were significantly iess than those =
obtained using a2 circular autocorrelation feature extractor. Consider- ]
ing the 957 recognition accuracy obtained by Dudani on aircraft iden-
tification using moment invariants, the 55-707 recognition accuracy

obtained on facial profiles was disappointingly low. Three possible

)

reasons for this low recognition accuracy may be advanced. The facsial |

profile recognition problem was defined with 10 classes while the i

aircraft recognition problem had only 6. The increased number of
classes increases the difficulty of class separation by the classifi-r ]
and can thus reduce the recognition accuracy. Facial profiles are
very similar with only subtle variations to determine one class from ]

another, while in many views, different aircraft have distinctly dif- ]

ferent silhouettes. Facial profile recognition may therefore be a

more difficult task. This assumption is supported by the recognition

[ LY

accuracy of humans at the two tasks. Human recognition accuracies

| T TS
4
T

were 73-76% correct for facial profiles and 79-92X% correct for aircraft.

The input system produced images with considerable variation from

4
A bRt AR

sample to sample within a given class.

This mesans that test images
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presented to the machine for recognition may vary considerably from

the training image. This effect was less noticeable with the aircraft
images because of the higher image/background contrast ratio, again
indicating that the facial profile recognition problem is more difficuit.
In aircraft recogrition, a pauttern recognition system using the moment
invariant feature extractor performed slightly better than humans (957
versus 792-92%), while for facial profile recognition the pattern recog-
nition system using the moment invariant feature extractor perfornmed
slightly wors: than humans (55-70% versus 73-76%).

Two weight functions for the distance-weighted k-nearest neigh-
bor classifier were investigated. It was found that the weight function
dependent upon the Fuclidian distance squared (egq) gave about 77 better
recognition accuracy than the weight function dependent upon Euclidian
distance (epq). Using the weight functien dependent upon ezq, it was
found that only the first five nearest neighbors had significant weights
assigned and therefore k was fixed at five inszead of depending upon
Euclidian distance. The nearest neighbor classification algorithm was
compared against the distance-weighted k-nearest neighbor classifier.
Although thc significantly better recognition accuracy of the distance-
weighted k-nearest neighbor classifier described by Dudani [5] was not
ohgserved, the distance-weighted k-nearest neighbor classifier did give
a larger number of classes 1007 correctlv classified. There are two
possible explanations for this. The weight function used in Dudani's

classifier differs slightly from that used in this classifier, and

Dudani uged different training and test data, while in this comparison
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it

the training data was also used as the test data.

B e}

Two heuristic training algorithms, the bubble sort rule and

‘W,

the activity sort rule were described and a rationale for their opera-

tion presented. The two sorting rules were compared in a simple

BTty

experiment and the activity sort rule was found to give slightly

.Mﬂ»»«:

better recognition accuracy. The number of samples necessary to train

the authority files using the activity sort rule was found to be about

| St |

three times the training set size. To verify that the activity sort

rule did indeed select the authority file vectors to provide the best

!m -~ w«.,

recognition accuracy on an independent test zet, a large sample size

experiment was performed. Using Dudani's aircraft feature vectors and

g =y

pattern recognition gsvstem, the authority files were generated using

the activity sort rule. After about two passes through the training a

}

set the recognition accuracy was tested with ar independent test set.
The recognition accuracy was found te be only slightly less than that

obtaiued by Dudani (927 versus 957), while the authority file size

|

was about one-sixth that used by Dudani. These results were taken as

L=

verification of the expected operation of the activity sort rule for

automatic authority file training.

b}

The facial profile recognition system used the circular auto-
correlation feature extractor, the distance-weighted k-nearest neighbor

classifier and the activity sort rule for training. The 120 facial

o profile images were divided into training and test sets and the recog-
nition accuracies for various compositions of training and test sets -

versus authoritv file depth were found. The results showed that the
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maximum recognition accuracy on the test set did not cccur at maximum
file depth, but occurred around one-half the maximum file depth. The
results also indicated that maximum recognition accuracy is achieved by
using a training set iarge enough to contain the less probable feature
vector variations on any class, resulting in a better defined decision
surface. Recognition wuccuracies on the order of 80% (76-86%) were
achieved in geveral instances and a maximum recognition accuracy of

907 was achieved using test images independent from the training images.
Whern three human recognizers were presented with the same data, their

maximum recognition accuracy was 73-76%.

5.2 Extensions of This Research

Like any research, this work has raised more questions than it
has answered. Indeed, every aspect of this work requires further in-
vestigation. The circular autocorrelation function has been shown to
work very well, even better than moment invariants, on this particular
problem. Since circular autocorrelation is computationally both simple
and fast, its performance on other prohlems might very well be worth
investigating. Dudani {5] has shown that the distance~weighted k-nearest
neighbor rule can perform significantly better than the nearest neighbor
rule. This was not observed in this work, and an investigation into
the reasons for this may be warranted, since the nearest reighbor rule
is a simpler classification algurithm,

The two automatic training rules described in this thesis need

a much more exhaustive treatment. No attempt was made here to

R

- AN S

T o ot B B B T A Bt e, S g e g e SRS

%?
=
3
ki
g
i
ks

S

s B LR

s

‘;’é K.m £

B T L 7 s s

NAUTLTER a8

A AR S o S0

S
L%

o



o Fe TS5 25 R

o S y ) A T - i el il 0y - Y {J o) B 2
SRR i RIS TN S e ISR o U MR SO R A SRR e
/, s YN R AN o S i N ML R - - B

" ;

provide a theoretical explanation of their nerformance--this omission
El shouid be corrected. These two rules seem to be very useful for (]
authority file vector selection, their applicability to other pattern -

recognition cystems with other feature vector types should be investi-

gated. The erperiment using Dudani's data and the activity file sort
rule described in Section 3.5 should be repeated with smaller authority

file depths to determine how the activity sort rule performs under these

conditicns and just which feature vectors are used. "

25 e it Dy AN AN MR Xty

For facial recognition, several hardware improvements need to '

3 be made. The most glaring fault of the hardware used was the television

camera's inability to reproduce a facial profile accurately. A more
sophisticated input device, oue able to distinguish between flesh tcnes
and hair, clothing, and other background colors, is necessarv. Probably -
the best way to do this is with a color television camera with the capa-
bility of selecting one range of colors and rejecting all others. Color
information may also nrove useful in the identification process.

Jagadeesa [45] has recently developed a color television camera interface

i

for the Ohio State University Department of Electrical Engineering

PDP-9 computer, and it is ro be expected that results of the use of color

g e

information in this and other image recognition probiems will be forth-

could be speeded up considerably by implementing a hinary array processor

in hardware rather than simulation [41]. -
Besides hardware, other facial images should be investipated.

With the proper input system, repeztable binary images of the front view

coming. The prefiltering, edge extraction, and feature vector extraction 7!




of the face should be possihble. Such imazes may have the potential

for providing more information than the profile. Even more infor-

mation may i:e obtained by using several binary images with different

thresholds to ohtain a gray scale. The problem of automatic selection
of a face from a scene has been totallv ignored. This problem may

i
have to be solved before a practical recognition system can be produced.

This work along with others [5,6,7) has shown that pattern
recognition of two-dimensional images by machine is possible on a well ‘
defined problem in a laboratory environment. Recognition accuracies E
in excess of those achieved by humans have been demonstrated. The ;
next step is to remove the machine from the laboratory and apply this

knowledge to develop systems for less ideal conditions.
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g' APPENDIX A: SELECTED FACIAL PROFILES

i

! This appendix consists of twentv human facial profile images;
two images per class. The images were photographed from the Tektronix
611 display after they had been filtered to remove system noise and pro-

; duce a smoothed boundary. Excent for class 8, the images were not
selected to show the maximum variation from sample to sample within

i a given class; they are typical images and demonstrate the typical

3 variations from sample to sample for this input system. Class 8 con-

‘A!' N

; tains a reduced size facial profile that was used to check the reccgni-

%_ tion systems' size invariance.
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APPENDIX B: SELECTED PROFILES AFTER EDGE EXTRACTION

This appendix consists of the same twenty facial profiles of
appendix A, but after the front edge of the profile has been e:rtracted.
It can be seen that the sample~to-sample variation within a given class
i3 leas than that of the full profile, mainly hecause of the removal of
the hairline. Width variations in the extracted edge due to area

changes in the full profiie are not noticeable (see Section 2.3).
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APPENDIX C: COMPUTER PROGRAMS

This appendix contains the more pertinent programs written for

e ko B0 v - e

this thesis. The programs are written in FORTRAN IV, except for

three bit manipulation programs and a random number generator that are
written in PDP-9 agsembler. There are three main routines in this
appendix. RECOG3 is an on-line facial profile recognition routine.
Input is from either the television or a disk file. An image may be
€{1ltered, stored in a disk file, or both. An identification of the
input image may be requestedl and various operations on the authority

file are permitted. RECOG4 is the routine that was used to generate

a file of feature vectors corresponding to the 120 facial profile

images. The images had been filtered using RECOG3 before they were

used with RECOG4. RECOG5 is the routine used to generate an authority

5 Dl
"“ Ny i

file using either the bubble or activiiy sort rule. The recognition

s
et

e,
N

accuracy of the authority file may also be tested with this routine.

ot 7

Because of the experimental nature of this work, the programs
were written as short subroutines that could be called by the various
main routines to avoid duplicating large quantities of code. Each

subroutine was designed to perfonn one well defined task. CRCT1

PR P PR T T N T

corrects a hardware flaw in the television interface by adding some bits

S -

that are not input and deleting some nuise points on the border of

Ty % ey Ehds b A
LR A SR AR LY

the image. FILOP2 allows manipulation of a vector file. The file

XN s

e

may be listed or cleared, or a vector may he entered or deleted.
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FLTR2 removes small noise clusters and smooths the boundary of a bt

: binary image. IDENT2 performs a distance weighted k-nearest neigh- &
7 bor classification of an unknown feature vector for some specified A
- k2

i authority file. RANDOM is a random number generator. SORT1 is an E
e

_ implementation of the bubble sort training rule. SORTZ is an im- E:

¥ plementation of the activity sort training rule. XFRM3 performs the ' %

; P
T circular autocorrelation function on a binary image, generating the ; 4
] 12-dimensional feature vector. XTRCT1 extracts the right-hand L

{ i

- i v
(zero degree) edge of an image, i.e., the front edge of a facial : i_

2 i 7
profile. i k2

7 C g

s Three array processing routines were written in assembler to i i
% - complement those written by Miller [3]. INTRSC counts the number of ;%
: B
- corresponding one-celis in two binary arrays. INVERT complerents e

| I every cell of a hinary arravy. SHIFT translates a binary image a ! (f
: Ll ! '
> specified distance aleng the x and y axes. P
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